In recent years, deep neural networks have been utilized in a wide variety of applications including image generation. In particular, generative adversarial networks (GANs) are able to produce highly realistic pictures as part of tasks such as image compression. As with standard compression, it is desirable to be able to automatically assess the perceptual quality of generative images to monitor and control the encode process. However, existing image quality algorithms are ineffective on GAN generated content, especially on textured regions and at high compressions. Here we propose a new 'naturalness'-based image quality predictor for generative images. Our new GAN picture quality predictor is built using a multi-stage parallel boosting system based on structural similarity features and measurements of statistical similarity. To enable model development and testing, we also constructed a subjective GAN image quality database containing (distorted) GAN images and collected human opinions of them. Our experimental results indicate that our proposed GAN IQA model delivers superior quality predictions on the generative image datasets, as well as on traditional image quality datasets.
KSP Keywords
Deep neural network(DNN), Monitor and Control, Multi-stage, Perceptual Quality, Picture quality, Quality prediction, Structure Similarity Index measure(SSIM), Textured regions, generative adversarial network, image Compression, image datasets
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.