An electromagnetic field penetrating through an aperture or slot of a metallic enclosure generates many standing-waves due to the resonance inside the metallic enclosure, which results in reduced shielding performance. This paper examines the effect of absorbent material (absorber) to improve shielding effectiveness (SE) of large metallic rooms with apertures or slots. First, a theoretical formulation to extract the Q-factor of an absorber with any shape is proposed. Using this, the contribution of the absorber to the SE improvement of a shielded room with different sized circular apertures was investigated. Second, the resonant mode density inside the shielded room was classified into non-resonant, under-moded, and over-moded states with an increase in frequency, and the effect of the absorber in each frequency range was examined. The analysis was conducted through numerical simulation using a commercial full-wave simulator and experimental measurement using a fabricated actual shielded room and commercial absorbers. The accuracy of the analysis results was verified through the comparison of simulated and measured results. The analysis results ensured that the absorber was not effective in improving the SE in the non-resonant state of the metallic room. It was also confirmed that the absorber was effective in improving the SE in the over-moded state of the metallic room where a severe standing-wave occurs. In addition, the SE improvement level differed depending on the location of the absorber in the room.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.