Herein, we proposed a multi-scale multi-band dilated time-frequency densely connected convolutional network (DenseNet) with long short-term memory (LSTM) for audio source separation. Because the spectrogram of the acoustic signal can be thought of as images as well as time series data, it is suitable for convolutional recurrent neural network (CRNN) architecture. We improved the audio source separation performance by applying the dilated block with a dilated convolution to CRNN architecture. The dilated block has the role of effectively increasing the receptive field in the spectrogram. In addition, it was designed in consideration of the acoustic characteristics that the frequency axis and the time axis in the spectrogram are changed by independent influences such as speech rate and pitch. In speech enhancement experiments, we estimated the speech signal using various deep learning architectures from a signal in which the music, noise, and speech were mixed. We conducted the subjective evaluation on the estimated speech signal. In addition, speech quality, intelligibility, separation, and speech recognition performance were also measured. In music signal separation, we estimated the music signal using several deep learning architectures from the mixture of the music and speech signal. After that, the separation performance and music identification accuracy were measured using the estimated music signal. Overall, the proposed architecture shows the best performance compared to other deep learning architectures not only in speech experiments but also in music experiments.
KSP Keywords
Acoustic characteristics, Acoustic signal, Audio source separation, Best performance, Convolutional networks, Deep Learning Architectures, Dilated Convolution, Identification accuracy, Multi-scale, Music identification, Receptive field
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.