Journal Article
Polyvinylalcohol (PVA)-Assisted Exfoliation of ReS2 Nanosheets and the Use of ReS2-PVA Composites for Transparent Memristive Photosynapse Devices
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted significant attention for their outstanding optoelectrical properties. Unlike most TMDs with layer-dependent photoresponsivity, rhenium disulfide (ReS2) shows excellent thickness-independent photoresponsivity. Herein, we show a surfactant-free polyvinyl alcohol (PVA)assisted exfoliation method for 2D-TMDs in aqueous solution and a transparent photosensitive memristor synapse device based on ReS2 nanosheets composited with PVA. ReS2 nanosheets are obtained via PVA-assisted exfoliation. After exfoliation, the ReS2?닋PVA dispersion solution is spin-coated on a substrate and dried to form a nanocomposite film without additional processing. Transparent memristors are then fabricated on plastic or glass substrates to demonstrate the applicability of the ReS2?닋PVA film. The devices show ?쐗rite once, read many?? memory behavior with a high ON/OFF current ratio (1.0 × 104 at 0.5 V) during electrical operation. In the high resistive state, synaptic functions with long-term memory behavior are successfully mimicked by applying photonic stimuli to the transparent ReS2?닋PVA memristors. The excitatory postsynaptic current stimulated by the photosignal is gradually reduced by electric stimuli. The proposed PVA-assisted exfoliation method is cost-effective, environmentally friendly, and applicable to various TMD nanomaterials. Furthermore, the ReS2?닋PVA nanocomposite film obtained via a simple solution-based process demonstrates excellent photosynaptic behavior.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.