Human-object interaction (HOI) detection, which finds the relationships between humans and objects, is an important research area, but current HOI detection performance is unsatisfactory. One of the main problems is that CNN-based HOI detection algorithms fail to predict correct outputs for unseen test data based on a limited number of available training examples. Herein, we propose a novel framework for HOI detection called the on-the-fly stacked generalization deep neural network (OSGNet). OSGNet consists of three main components: (1) feature extraction modules, (2) HOI relationship detection networks, and (3) a meta-learner for combining the outputs of sub-models. Here, components (1) and (2) are considered to be sub-models. Any task-based feature extraction modules, such as classification or human pose estimation modules, can be used as sub-models. To achieve on-the-fly stacked generalization, the sub-models and meta-learner are trained simultaneously. The sub-models are trained to provide complementary information, and the meta-learner improves the generalization performance for unseen test data. Extensive experiments demonstrate that the proposed method achieves state-of-the-art accuracy, particularly in cases involving rare classes.
KSP Keywords
Deep neural network(DNN), Detection algorithm, Feature extractioN, Generalization performance, Human Pose estimation, Human-Object Interaction, Interaction detection, Stacked generalization, Sub-models, Task-Based, Test data
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.