데이터과학과 기계학습이 융합되는 DSML(Data Science & Machine Learning) 프로젝트에서 많은 기업이 실패를 경험하고 있으며, 데이터 의존적인 DSML 프로젝트 수명주기의 복잡성을 제어하지 못하는 것이 핵심 원인으로 거론되고 있다. 본 고에서는 주요한 실패 요인에 대한 분석을 토대로, 순방향과 역방향으로 복잡하게 얽히며 모니터링과 지속적 개선이 수반되어야 하는 DSML 프로젝트의 수명주기의 특성과, 이를 성공적으로 제어하여 기술 부채를 줄일 수 있도록 하는 기계학습 운영화(MLOps)의 개념을 살펴본다. DSML 프로젝트가 기계학습 운영화를 통해 실행되는 단계를 계획 수립, 데이터 준비, 분석 및 관리, 기계학습, 배포 및 생산화, 풀 스택 지원으로 구분하고, 각 단계에 포함되는 중요 프로세스를 정리한 프로세스 풍경(process landscape)을 제시한다. 기계학습 운영화 실행 전략에 활용할 수 있도록 각 프로세스의 특징 및 주요 기능을 상세히 정리하여, DSML 프로젝트를 통해 비즈니스 데이터 기반의 통찰을 얻고자 하는 분들에게 작은 도움을 제공하고자 한다.
KSP Keywords
data science, machine Learning
This work is distributed under the term of Korea Open Government License (KOGL)
(Type 2: : Type 1 + Commercial Use Prohibition)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.