Human activity recognition (HAR) using an accelerometer can provide valuable information for understanding user context. Therefore, several studies have been conducted using deep learning to increase the recognition rate of activity classification. However, the existing dataset that is publicly available for HAR tasks contains limited data. Previous works have applied data augmentation methods that simply transform the entire accelerometer-signal dataset. However, the label of the augmented signal cannot be easily recognized by humans, and the augmentation methods cannot ensure that the label of the signal is preserved. Therefore, we propose a novel data augmentation method that reflects the characteristics of the sensor signal and can preserve the label of the augmented signal by generating partially occluded data of the accelerometer signals. To generate the augmented data, we apply time-warping, which deforms the time-series data in the time direction. We handle jittering effects and subsequently apply data masking to drop out a part of the input signals. We compare the performance of the proposed augmentation method with that of conventional methods by using two public datasets and an activity recognition model based on convolutional neural networks. The experimental results show that the proposed augmentation method improves the recognition rate of the activity classification model, regardless of the dataset. Additionally, the proposed method shows superior performance over conventional methods on the two datasets.
KSP Keywords
Augmentation method, Classification models, Conventional methods, Convolution neural network(CNN), Data Augmentation, Data masking, Drop-out, Human activity recognition, Limited data, Public Datasets, Recognition Rate
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.