We address a nonparallel data-driven many-to-many speech modeling and multimodal style conversion method. In this work, we train a speech conversion model for multiple domains rather than a specific source and target domain pair, and we generate diverse output speech signals from a given source domain speech by transferring some speech style-related characteristics while preserving its linguistic content information. The proposed method comprises a variational autoencoder (VAE)-based many-to-many speech conversion network with a Wasserstein generative adversarial network (WGAN) and a skip-connected autoencoder-based self-supervised learning network. The proposed conversion network trains the models by decomposing the spectral features of the input speech signal into a content factor that represents domain-invariant information and a style factor that represents domain-related information to automatically estimate the various speech styles of each domain, and the network converts the input speech signal to another domain using the computed content factor with the target style factor we want to change. Diverse and multimodal outputs can be generated by sampling different style factors. We also train models in a stable manner and improve the quality of generated outputs by sharing the discriminator of the VAE-based speech conversion network and that of the self-supervised learning network. We apply the proposed method to speaker conversion and perform the perceptual evaluations. Experimental results revealed that the proposed method obtained high accuracy of converted spectra, significantly improved the sound quality and speaker similarity of the converted speech, and contributed to stable model training.
KSP Keywords
Conversion method, Data-Driven, High accuracy, Learning network, Linguistic content, Many-to-many, Multiple domains, Source Domain, Speaker conversion, Speaker similarity, Speech Signals
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC ND)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.