ETRI-Knowledge Sharing Plaform

KOREAN
논문 검색
Type SCI
Year ~ Keyword

Detail

Journal Article Accelerating On-Device Learning with Layer-Wise Processor Selection Method on Unified Memory
Cited 4 time in scopus Download 230 time Share share facebook twitter linkedin kakaostory
Authors
Donghee Ha, Mooseop Kim, KyeongDeok Moon, Chi Yoon Jeong
Issue Date
2021-04
Citation
Sensors, v.21, no.7, pp.1-19
ISSN
1424-8220
Publisher
MDPI
Language
English
Type
Journal Article
DOI
https://dx.doi.org/10.3390/s21072364
Abstract
Recent studies have applied the superior performance of deep learning to mobile devices, and these studies have enabled the running of the deep learning model on a mobile device with limited computing power. However, there is performance degradation of the deep learning model when it is deployed in mobile devices, due to the different sensors of each device. To solve this issue, it is necessary to train a network model specific to each mobile device. Therefore, herein, we propose an acceleration method for on-device learning to mitigate the device heterogeneity. The proposed method efficiently utilizes unified memory for reducing the latency of data transfer during network model training. In addition, we propose the layer-wise processor selection method to consider the latency generated by the difference in the processor performing the forward propagation step and the backpropagation step in the same layer. The experiments were performed on an ODROID-XU4 with the ResNet-18 model, and the experimental results indicate that the proposed method reduces the latency by at most 28.4% compared to the central processing unit (CPU) and at most 21.8% compared to the graphics processing unit (GPU). Through experiments using various batch sizes to measure the average power consumption, we confirmed that device heterogeneity is alleviated by performing on-device learning using the proposed method.
KSP Keywords
Acceleration method, Average power consumption, Computing power, Data transfer, Device heterogeneity, Forward Propagation, Mobile devices, Network Model, Selection method, Unified memory, central processing unit
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
CC BY