Postal logistics organizations are characterized as having high labor intensity and short response times. These characteristics, along with rapid change in mail volume traffic, make load scheduling a fundamental concern. Load analysis of major postal infrastructures such as post offices, sorting centers, exchange centers, and delivery stations is required for optimal postal logistics operation. Especially, the performance of postal traffic forecasting is essential for optimizing the resource operation by accurate load analysis. Therefore, this paper addresses a demand forecasting problem for parcel logistics. The main purpose of this paper is to describe a machine learning approach for predicting short-term traffic of postal parcel based on feature engineering and to introduce an application to on-site logistics service of Korea Post. The proposed method consists of three main phases. First, the characteristics of the postal traffic are analyzed and calendar and volume-based features are generated. Second, multiple regression models by the clusters resulted from feature engineering are developed. Finally, individual models for level 4 and level 5 delivery stations are constructed to reinforce prediction accuracy. The experiment shows the advantage in terms of forecasting performance. Comparing with other techniques, experimental results show that the proposed scheme improves the average performance up to 50.1%.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.