The short-wavelength optical loss in the Cu(In,Ga)Se2 (CIGS) thin-film solar cells is inevitable owing to the substantial light absorption in the front layers such as the buffer layer and transparent conducting oxide (TCO) layer. Quantum dots (QDs) with CdSe/ZnS core-shell structure is utilized to increase the short-wavelength spectral response of the CIGS thin-film solar cells. The QDs absorbs photons in the short-wavelength region (<540 nm) and re-emits the photons at approximately 540 nm; these photons penetrate the front layers and reach the CIGS absorber layer. The thickness of the QD layer was varied via drop coating with different QD concentrations, thereby facilitating the application of the optimized QD layer as a down-conversion layer in the CIGS thin-film solar cells. The photoelectric parameters of the CIGS thin-film solar cells were dependent on the QD thickness, and they were characterized using quantum efficiency measurements, spectrophotometric analysis, and current-voltage measurements. The CIGS thin-film solar cells with a 0.7 μm-thick QD layer exhibited the highest increase of 1.86 mA cm?닋2 and 0.75% in the short-circuit current density and efficiency, respectively.
KSP Keywords
40 nm, Buffer layer, CIGS absorber layer, Core-shell structure, Current-Voltage measurements, Drop-coating, Light absorption, Optical loss, Quantum Dot(QD), Quantum Efficiency, Short circuit current density
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.