Social distancing to reduce the spread of coronavirus disease 2019 (COVID-19) made a huge increase in the global OTT market, and OTT service providers get millions of new subscribers. Recently OTT service providers are extending their service to video broadcasting. As a one type of video broadcasting, this paper covers multimedia streaming with multiple sources. Multimedia streaming with multiple sources has multiple sources, and receivers can select one specific source to watch the video from the source. Sources include cameras capturing different angles of same event or location, cameras in geographical locations, etc. For delivering video to rapidly increasing number of users, multimedia streaming with multiple sources system needs efficient and scalable delivery method. Tree-based Peer-to-peer (P2P) networking has been investigated as the delivery solution of multimedia streaming with multiple sources, and set-top boxes or mobile apps of OTT service can be used as peers connecting the subscriber of OTT service. However, the scalability of the tree-based P2P networking is limited by the out-degree of a tree that branches linearly with the number of users. Hence, this study proposes clustering peers based on the location proximity of the peers to enhance the scalability of the P2P multimedia streaming with multiple sources. By clustering peers, one or more peers can be grouped into a virtual peer with an aggregated uplink/downlink capacity. This paper describes P2P multimedia streaming with multiple sources and algorithms for the proposed clustering method. Two applications which are one-view multiparty video conferencing and multi-view video streaming are introduced, and considerations for applying the proposed method to the applications are also discussed. The experimental results show that location-proximity-based clustering is effective in achieving a scalable P2P multimedia streaming with multiple sources by reducing the out-degree of a tree for the introduced applications. The proposed clustering leads improvement in the maximum achievable video bit rate, the average viewing video bit rate, and perceived delay.
KSP Keywords
Clustering method, Clustering peers, Different angles, Downlink capacity, Location proximity, Multiple sources, Multiview video, Number of users, OTT services, Out-degree, P2P Networking
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.