To prevent crop damage from harmful birds, various repelling methods have been studied. However, harmful birds are still causing damage in the orchard by adapting to the repelling device according to their biological characteristics. This paper proposes a method called Anti-adaptive Harmful Birds Repelling (AHBR) that uses the model-free learning idea of the Reinforcement Learning (RL) approach to repell harmful birds that can effectively prevent bird adaptation problems. To prevent adaptation, the AHBR method uses a method of learning the bird's reaction to the available threat sounds and playing them in patterns that are difficult to adapt through the RL approach. We also proposed the Long-term and Short-term (LaS) policy to meet the Markov assumptions that make RL difficult to implement in the real world. The LaS policy enable learning of the actual bird's reaction to the sound of a threat. The performance of the AHBR method was evaluated in a closed environment to experiment real harmful bird such as Brown-eared Bulbul, Great Tit, and Eurasian Magpie captured in orchards. Results obtained from the experiment showed that the AHBR method was on average 43.5% better than the threat sound patterns(One, Sequential, Reverse Sequential, Random) used in commercial products.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.