Based on Alberta Infant Motor Scale (AIMS), a questionnaire that tracks an infant's motor function, an infant's mental development can be evaluated by recording poses a baby can achieve. Therefore, it is meaningful to propose a systematic image-based pose classifier to classify infant actions based on AIMS to provide early diagnosis of a potential developmental disorder such as Autism. This paper presents a hierarchical pose classifier, given a baby image frame that combines the benefits of 3D human pose estimation and scene context information. Due to privacy policies, we cannot collect enough real infant images/videos for experiments. Instead, we generate synthetic baby images with the help of the Skinned Multi-Infant Linear (SMIL) model. Images are first fed into a ResNet-50 for coarse-level pose classification. A stacked hourglass CNN and a hierarchical 3D pose estimation scheme are used for 2D/3D pose estimation. Finally, an innovative Hierarchical Infant Pose Classifier (HIPC) takes the estimated 3D keypoints and coarse-level pose classification confidence scores to give the fine-level baby pose classification results. Our experimental results show that our hierarchical pose classifier achieves accurate and stable performance on infant pose recognition.
KSP Keywords
3D human pose estimation, 3D pose estimation, Action Analysis, Context Information, Developmental disorder, Early diagnosis, Image-based, Mental development, Motor function, Motor scale, Pose classification
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.