With the increase in the learning capability of deep convolution-based architectures, various applications of such models have been proposed over time. In the field of anomaly detection, improvements in deep learning opened new prospects of exploration for the researchers whom tried to automate the labor-intensive features of data collection. First, in terms of data collection, it is impossible to anticipate all the anomalies that might exist in a given environment. Second, assuming we limit the possibilities of anomalies, it will still be hard to record all these scenarios for the sake of training a model Third, even if we manage to record a significant amount of abnormal data, it's laborious to annotate this data on pixel or even frame level. Various approaches address the problem by proposing one-class classification using generative models trained on only normal data. In such methods, only the normal data is used, which is abundantly available and doesn?셳 require significant human input. However, such approaches have two drawbacks. First, these are trained with only normal data and at the test time, given abnormal data as input, still generate normal-looking output. This happens due to the hallucination characteristic of generative models, which is not desirable in anomaly detection systems because of their need to be accurate and reliable. Next, these systems are not capable of utilizing abnormal examples, however small in number, during the training. In this paper, we propose anomaly detection with negative learning (ADNL), which employs the negative learning concept for the enhancement of anomaly detection by utilizing a very small number of labeled anomaly data as compared with the normal data during training. The idea, which is fairly simple yet effective, is to limit the reconstruction capability of a generative model using the given anomaly examples. During the training, normal data is learned as would have been in a conventional method, but the abnormal data is utilized to maximize loss of the network on abnormality distribution. With this simple tweaking, the network not only learns to reconstruct normal data but also encloses the normal distribution far from the possible distribution of anomalies. In order to evaluate the efficiency of our proposed method, we defined the baseline using Adversarial Auto-Encoder (AAE). Our experiments show significant improvement in area under the curve (AUC) over conventional AAE. An extensive evaluation, which has been carried out on the MNIST dataset as well as a locally recorded pedestrian dataset, is reported in this paper.
KSP Keywords
Auto-Encoder(AE), Conventional methods, Data Collection, Detection Systems(IDS), Extensive evaluation, Generative models, MNIST Dataset, Normal Distribution, Over time, Test Time, Various approaches
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.