ETRI-Knowledge Sharing Plaform

KOREAN
논문 검색
Type SCI
Year ~ Keyword

Detail

Journal Article On the Space-Time Statistics of Motion Pictures
Cited 12 time in scopus Share share facebook twitter linkedin kakaostory
Authors
Dae Yeol Lee, Hyunsuk Ko, Jongho Kim, Alan C. Bovik
Issue Date
2021-07
Citation
Journal of the Optical Society of America A, v.38, no.7, pp.908-923
ISSN
1084-7529
Publisher
Optical Society of America (OSA)
Language
English
Type
Journal Article
DOI
https://dx.doi.org/10.1364/JOSAA.413772
Abstract
It is well known that natural images possess statistical regularities that can be captured by bandpass decomposition and divisive normalization processes that approximate early neural processing in the human visual system. We expand on these studies and present new findings on the properties of space-time natural statistics that are inherent in motion pictures. Our model relies on the concept of temporal bandpass (e.g., lag) filtering in lateral geniculate nucleus (LGN) and area V1, which is similar to smoothed frame differencing of video frames. Specifically, we model the statistics of the differences between adjacent or neighboring video frames that have been slightly spatially displaced relative to one another. We find that when these space-time differences are further subjected to locally pooled divisive normalization, statistical regularities (or lack thereof) arise that depend on the local motion trajectory. We find that bandpass and divisively normalized frame differences that are displaced along the motion direction exhibit stronger statistical regularities than for other displacements. Conversely, the direction-dependent regularities of displaced frame differences can be used to estimate the image motion (optical flow) by finding the space-time displacement paths that best preserve statistical regularity.
KSP Keywords
Direction-dependent, Frame Differencing, Image motion, Lateral geniculate nucleus, Motion direction, Motion pictures, Motion trajectory, Natural images, Neural processing, Optical flow, Space time(ST)