Further evolved Multimedia Broadcast Multicast Service (FeMBMS) was introduced in 3GPP Release 14 to provide standalone ultra-high-definition multicast/broadcast services over larger distances. Release 16 made significant improvements to FeMBMS with support for large inter site distance up to 125 km, support for high mobility up to 250 km/h, and enhancements to the cell acquisition subframe. However, the capabilities, efficiency, and service delivery flexibility of this system still lags behind dedicated broadcasting systems such as ATSC 3.0. Our previous works had shown that in an LTE infrastructure, incorporating layered division multiplexing (LDM) can deliver broadcast and broadband services in one RF channel to achieve higher spectral efficiency. The newest 5G standards bring many changes to the 3GPP specifications. Therefore, this study investigates the performance and capabilities of LDM for delivering mixed broadcast and broadband services for 5G and beyond. Simulations show that in an LDM enabled 5G broadcast priority network, a broadcast service and a near full capacity broadband service can be delivered using the same time frequency resource.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.