We propose a novel data-driven feature extraction approach based on direct causality and fuzzy temporal windows (FTWs) to improve the precision of human activity recognition and mitigate the problems of easily-confused activities and unlabeled data, which significantly degrade classification performance owing to the correlation of labeled data. In recognizing activities, the proposed approach not only considers the importance of oncoming short-term sensor data but also considers the continuity from past activities of the preceding long-term sensor data. In terms of the oncoming data, the causality feature is extracted using the direct transfer entropy to determine the unique pattern of an activity, which represents the quantified causal relationship between sensor activations. In terms of the preceding data, several hours of historical data are compressed to fuzzy features based on FTWs. Subsequently, the causality and fuzzy features are fused by matrix multiplication to express distinct features of activities. To effectively learn the spatiotemporal dependencies of the fused feature, deep long short-term memory (LSTM), two-dimensional convolutional neural network (2D-CNN), and hybrid models composed of a combination of LSTM and CNN were used. Leave-one-day-out cross-validation was performed based on the CASAS open datasets, including Aruba, Cairo, and Milan. The results showed that the macro-F1-scores were improved by 16.4, 37.5, and 18.5%, respectively, compared with those of the FTW-only environments. In addition, the proposed approach could improve the precision of activity recognition and mitigate the problems associated with the environments containing unlabeled data.
KSP Keywords
Causal relationship, Classification Performance, Convolution neural network(CNN), Cross validation(CV), Data-Driven, Direct transfer, Feature extractioN, Human activity recognition, Hybrid model, Spatiotemporal dependencies, Transfer entropy
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC ND)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.