Strict restrictions on spectrum utilization and the rapid increases in mobile users have brought fundamental challenges for mobile network operators in securing sufficient spectrum resources. In designing reliable cellular networks, it is essential to predict spectrum saturation events in the future by analyzing the past behavior of base stations, especially their frequency resource block (RB) utilization states. This paper investigates a deep learning-based forecasting strategy of the future RB usage rate (RBUR) status of hundreds of LTE base stations deployed in Seoul, South Korea. The dataset consists of real measurement RBUR samples with a randomly varying number of base stations at each measurement time. This poses a difficulty in handling variable-length RBUR data vectors, which is not trivial for state-of-the-art deep learning estimation models, e.g., recurrent neural networks (RNNs), developed for handling fixed-length inputs. To this end, we propose a two-step RBUR estimation approach. In the first step, we extract a useful feature of the RBUR dataset that accurately approximates the behavior of the top quantile base stations. The feature parameters are carefully designed to be fixed-length vectors regardless of the dimensions of the raw RBUR samples. The fixed-length feature parameter vectors are readily exploited as the training dataset of RNN-based prediction models. Thus, in the second step, we propose a feature estimation strategy where the RNN is trained to predict the future RBUR from the input feature parameter sequences. With the estimated RBUR at hand, we can easily predict the spectrum saturation of the future LTE systems by examining the resource utilization states of the top quantile base stations. Numerical results demonstrate the performance of the proposed RBUR estimation methods with the real measurement dataset.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.