Journal Article
Enhanced Interfacial Reaction of Silicon Carbide Fillers onto the Metal Substrate in Carbon Nanotube Paste for Reliable Field Electron Emitters
Adhesion of carbon nanotube (CNT) onto a cathode substrate is very crucial for field electron emitters that are operating under high electric fields. As a supporting precursor of CNT field emitters, we adopted silicon carbide (SiC) nano-particle fillers with Ni particles and then enhanced interfacial reactions onto Kovar-alloy substrates through the optimized wet pulverization process of SiC aggregates for reliable field electron emitters. As-purchased SiC aggregates were efficiently pulverized from 20 to less than 1 micro-meter in a median value (D50). CNT pastes for field emitters were distinctively formulated by a mixing process of the pulverized SiC aggregates and pre-dispersed CNTs. X-ray photoelectron spectroscopy studies showed that the optimally pulverized SiC-CNT paste-emitter had a stronger Si 2p3/2 signal in the Ni2Si phase than the as-purchased one. The Si 2p3/2 signal would represent interfacial reaction of the SiC nano-particle onto Ni from the CNT paste and the Kovar substrate, forming the supporting layer for CNT emitters. The optimal paste-emitter even in a vacuum-sealed tube exhibited a highly reliable field emission current with a high current density of 100 mA cm?닋2 for over 50 h along with good reproducibility. The enhanced interfacial reaction of SiC filler onto the metal substrates could lead to highly reliable field electron emitters for vacuum electronic devices.
KSP Keywords
Alloy substrate, CNT paste, Carbon nano-tube(CNT), Cathode substrate, Field electron emitters, High Current Density, Interfacial reaction, Mixing process, Ni particles, Si 2p, Si Phase
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.