RISC-V has been experiencing explosive growth since its first appearance in 2011. Dozens of free and open cores developed based on this instruction set architecture have been released, and RISC-V based devices optimized for specific applications such as the IoT and wearables, embedded systems, AI, and virtual, augmented reality are emerging. As the RISC-V cores are being used in various fields, the demand for multicore platforms composed of RISC-V cores is also rapidly increasing. Although there are various RISC-V cores developed for each specific application, and it seems possible to pick them up to create the most optimized multicore for the target application, unfortunately it is very difficult to realize this in reality. This is mainly because most open cores are released in the form of a single core without cache coherence logic, which requires expensive design effort and development costs to address it. To tackle this issue, this paper proposes a method to solve the cache coherence problem without additional effort from the developer and to maximize the performance of the multicore composed of the RISC-V core selected by the developer. Along with a description of the sophisticated operating mechanisms of the proposed method, this paper details the architecture and hardware implementation of the proposed method. Experiments conducted through the prototype development of a RISC-V multicore platform involving the proposed architecture and development of an application running on the platform demonstrate the effectiveness of the proposed method.
KSP Keywords
Augmented reality(AR), Cache coherence, Development cost, Hardware implementation, Instruction set architecture, Prototype Development, RISC-V, Specific applications, embedded system, multi-core platform, single core
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.