Ongoing or upcoming surveys such as Gaia, ZTF, or LSST will observe the light curves of billions or more astronomical sources. This presents new challenges for identifying interesting and important types of variability. Collecting a sufficient amount of labeled data for training is difficult, especially in the early stages of a new survey. Here we develop a single-band light-curve classifier based on deep neural networks and use transfer learning to address the training data paucity problem by conveying knowledge from one data set to another. First we train a neural network on 16 variability features extracted from the light curves of OGLE and EROS-2 variables. We then optimize this model using a small set (e.g., 5%) of periodic variable light curves from the ASAS data set in order to transfer knowledge inferred from OGLE and EROS-2 to a new ASAS classifier. With this we achieve good classification results on ASAS, thereby showing that knowledge can be successfully transferred between data sets. We demonstrate similar transfer learning using HIPPARCOS and ASAS-SN data. We therefore find that it is not necessary to train a neural network from scratch for every new survey; rather, transfer learning can be used, even when only a small set of labeled data is available in the new survey.
KSP Keywords
Data sets, Deep neural network(DNN), Early stages, Labeled data, Light curves, Small set, deep transfer learning, single-band, training data, transfer knowledge
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.