In this letter, we consider outer-loop link adaptation, wherein we pursue to find the optimum modulation and coding scheme (MCS) that provides the maximum throughput without directly estimating the channel state. We cast this problem in a form of multi-armed bandit, an online decision making policy based on sequential observations. To efficiently solve a formulated problem, we propose a novel two-stage Thompson sampling. The proposed method is built based on the observation that the optimum MCS level appears in a certain group that satisfies feasibility conditions. Exploiting this feature, we find the optimum MCS level via two stages. In the first stage, we identify a group that has high probability of including the optimum MCS. In the second stage, we only focus on the MCS levels within the identified group in the first stage, and investigate the optimum MCS. By doing this, the search space is significantly reduced, which leads to the performance improvement. Simulation results show that the proposed method outperforms the existing state-of-art algorithm.
KSP Keywords
ART algorithm, Channel state, Decision making policy, First stage, Link adaptation, Online decision, Search Space, State-of-art, Thompson sampling, Two-Stage, existing state
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.