Journal Article
Effects and Mechanism of Surface Water Wettability and Operating Frequency on Response Linearity of Flexible IDE Capacitive Humidity Sensor
Flexible capacitive humidity sensors are promising for low-cost, wearable, and radio frequency identification sensors, but their nonlinear response is an important issue for practical applications. Herein, the linearity of humidity response was controlled by surface water wettability and operating frequency of sensor, and the mechanism was explained in detail by surface water condensation. For a sensor with a Ag interdigitated electrode (IDE) on a poly(ethylene terephthalate) substrate, the capacitance showed a small linear increase with humidity up to 70% RH but a large nonlinear increase in the higher range. The response linearity was increased by a hydrophobic surface treatment of self-assembled monolayer coating while it was decreased by an ultraviolet/ozone irradiation for hydrophilicity. It was also increased by increasing the frequency in the range of 1??100 kHz, more prominently on a more hydrophilic surface. Based on experiment and simulation, the increase in sensor capacitance was greatly dependent on the geometric pattern (e.g., size, number, and contact angle) and electrical permittivity of surface water droplets. A larger and more nonlinear humidity response resulted from a larger increase in the number of droplets with a smaller contact angle on a sensor surface with higher water wettability and also from a higher permittivity of water at a lower frequency.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.