In the last decade, deep neural network (DNN)-based object detection technologies have received significant attention as a promising solution to implement a variety of image understanding and video analysis applications on mobile edge devices. However, the execution of computationally intensive DNN-based object detection workloads in mobile edge devices is insufficient in fulfilling the object detection requirements with high accuracy and low latency, owing to the limited computation capacity. In this paper, we implement and evaluate a DNN-based object detection offloading framework to improve the object detection performance of mobile edge devices by offloading computation-intensive workloads to a remote edge server. However, preliminary experimental results have shown that offloading all object detection workloads of mobile edge devices may lead to worse performance than executing the workloads locally. This degradation is obtained from the inefficient resource utilization in the edge computing architectures, both for the edge server and mobile edge devices. To resolve the aforementioned problem with degradation, we devise a device-aware DNN offloading decision algorithm that is aimed to maximize resource utilization in the edge computing architecture. The proposed algorithm decides whether or not to offload the object detection workloads of edge devices by considering their computing power and network bandwidth, and therefore maximizing their average object detection processing frames per second. Through various experiments conducted in a real-life wireless local area network (WLAN) environment, we verified the effectiveness of the proposed DNN-based object detection offloading framework.
KSP Keywords
Computing architectures, Computing power, Decision algorithm, Deep neural network(DNN), Edge devices, Frames per second(FPS), High accuracy, Local Area Network(LAN), Low latency, Network bandwidth, Object detection
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.