When individuals interact with one another to accomplish specific goals, they learn from others' experiences to achieve the tasks at hand. The same holds for learning in virtual environments, such as video games. Deep multiagent reinforcement learning shows promising results in terms of completing many challenging tasks. To demonstrate its viability, most algorithms use value decomposition for multiple agents. To guide each agent, behavior value decomposition is utilized to decompose the combined Q-value of the agents into individual agent Q-values. A different mixing method can be utilized, using a monotonicity assumption based on value decomposition algorithms such as QMIX and QVMix. However, this method selects individual agent actions through a greedy policy. The agents, which require large numbers of training trials, are not addressed. In this paper, we propose a novel hybrid policy for the action selection of an individual agent known as Q-value Selection using Optimization and DRL (QSOD). A grey wolf optimizer (GWO) is used to determine the choice of individuals' actions. As in GWO, there is proper attention among the agents facilitated through the agents' coordination with one another. We used the StarCraft 2 Learning Environment to compare our proposed algorithm with the state-of-the-art algorithms QMIX and QVMix. Experimental results demonstrate that our algorithm outperforms QMIX and QVMix in all scenarios and requires fewer training trials.
KSP Keywords
Decomposition algorithm, Large numbers, Learning Environment, Learning in virtual environments, Multiple Agents, Policy Gradient, Reinforcement Learning(RL), StarCraft 2, action selection, grey Wolf optimizer, mixing method
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.