21HR6100, Development of polarization holotomography for pathological diagnosis,
Chae Byung Gyu
Abstract
The viewing-angle enlargement of a holographic image is a crucial factor for realizing the holographic display. The numerical aperture (NA) of digital hologram other than a pixel specification has been known to determine the angular field extent of image. Here, we provide a valid foundation for the dependence of viewing angle on the hologram numerical aperture by investigating mathematically the internal structure of the sampled point spread function showing a self-similarity of its modulating curve. The enhanced-NA Fresnel hologram reconstructs the image at a viewing angle larger than a diffraction angle by a hologram pixel pitch where its angle value is expressed in terms of the NA of whole hologram aperture, which is observed systematically by optical experiments. Finally, we found that the aliased replica noises generated in the enhanced-NA Fresnel diffraction regime are effectively suppressed within the diffraction scope by a digitized pixel. This characteristic enables us to overcome the image reduction and to remove the interference of high-order images, which leads to the wide viewing-angle holographic display.
KSP Keywords
Digital hologram, Fresnel diffraction, Fresnel hologram, Hologram aperture, Image reduction, Internal structure, Point spread function(PSF), high order, holographic display, numerical aperture, self-similarity
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.