International Conference on Intelligent Robots and Systems (IROS) 2021, pp.5321-5326
Publisher
IEEE
Language
English
Type
Conference Paper
Abstract
Estimating depth from a monocular image is an ill-posed problem: when the camera projects a 3D scene onto a 2D plane, depth information is inherently and permanently lost. Nevertheless, recent work has shown impressive results in estimating 3D structure from 2D images using deep learning. In this paper, we put on an introspective hat and analyze state-of-the-art monocular depth estimation models in indoor scenes to understand these models’ limitations and error patterns. To address errors in depth estimation, we introduce a novel Depth Error Detection Network (DEDN) that spatially identifies erroneous depth predictions in the monocular depth estimation models. By experimenting with multiple state-of-the-art monocular indoor depth estimation models on multiple datasets, we show that our proposed depth error detection network can identify a significant number of errors in the predicted depth maps. Our module is flexible and can be readily plugged into any monocular depth prediction network to help diagnose its results. Additionally, we propose a simple yet effective Depth Error Correction Network (DECN) that iteratively corrects errors based on our initial error diagnosis.
KSP Keywords
2D Plane, 3D scene, 3D structures, Address errors, Depth Map, Depth information, Depth prediction, Error correction, Error detection, Error diagnosis, Estimation model
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.