As mobile edge devices are getting powerful, on-device deep learning is becoming a reality. However, there are still many challenges for deep learning edge inferences, such as limited resources such as computing power, memory space, and energy. To address these challenges, model compression such as channel pruning, low rank representation, network quantization, and early exiting has been introduce to reduce the computational load of neural networks at a whole. In this paper, we propose an improved method of implementing early exiting branches on a pre-defined neural network, so that it can determine whether the input data is easy to process, therefore use less resource to execute the task. Our method starts with an entire search for activations in a given network, then inserting early exiting modules, testing those early exit branches, resulting in selecting useful branches that are both accurate and fast. Our contribution is reducing the computing time of neural networks by breaking the flow of models using execution branches. Additionally, by testing on all activations in neural network, we gain knowledge of the neural network model and insight on where to place the ideal early exit auxiliary classifier. We test on ResNet model and show reduction in real computation time on single input images.
KSP Keywords
Computing power, Computing time, Edge devices, Improved method, Limited resources, Low rank representation, Memory space, Model compression, Single-input, computation time, computational load
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.