Word embedding is essential for neural network models for various natural language processing tasks. Since the word embedding usually has a considerable size, in order to deploy a neural network model having it on edge devices, it should be effectively compressed. There was a study for proposing a block-wise low-rank approximation method for word embedding, called GroupReduce. Even if their structure is effective, the properties behind the concept of the block-wise word embedding compression were not sufficiently explored. Motivated by this, we improve GroupReduce in terms of word weighting and structuring. For word weighting, we propose a simple yet effective method inspired by the term frequency-inverse document frequency method and a novel differentiable method. Based on them, we construct a discriminative word embedding compression algorithm. In the experiments, we demonstrate that the proposed algorithm more effectively finds word weights than competitors in most cases. In addition, we show that the proposed algorithm can act like a framework through successful cooperation with quantization.
KSP Keywords
Approximation methods, Compression Algorithm, Edge devices, Frequency method, Low-rank approximation, Natural Language Processing(NLP), Neural network model, Word Embedding, neural network(NN), term frequency-inverse document frequency(TF-IDF)
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.