ETRI-Knowledge Sharing Plaform

KOREAN
논문 검색
Type SCI
Year ~ Keyword

Detail

Journal Article Impacts of Residual Self-Interference, Hardware Impairment and Cascade Rayleigh Fading on the Performance of Full-Duplex Vehicle-to-Vehicle Relay Systems
Cited 2 time in scopus Download 142 time Share share facebook twitter linkedin kakaostory
Authors
Ba Cao Nguyen, Le The Dung, Huu Minh Nguyen, Taejoon Kim, Young-Il Kim
Issue Date
2021-08
Citation
Sensors, v.21, no.16, pp.1-15
ISSN
1424-8220
Publisher
MDPI
Language
English
Type
Journal Article
DOI
https://dx.doi.org/10.3390/s21165628
Abstract
In practice, self-interference (SI) in full-duplex (FD) wireless communication systems cannot be completely eliminated due to imperfections in different factors, such as the SI channel estimation and hardware circuits. Therefore, residual SI (RSI) always exists in FD systems. In addition, hardware impairments (HIs) cannot be avoided in FD systems due to the non-ideal characteristics of electronic components. These issues motivate us to consider an FD-HI system with a decode-and-forward (DF) relay that is applied for vehicle-to-vehicle (V2V) communication. Unlike previous works, the performance of the proposed FD-HI-V2V system is evaluated over cascaded Rayleigh fading channels (CRFCs). We mathematically obtain the exact closed-form expressions of the outage probability (OP), system throughput (ST), and ergodic capacity (EC) of the proposed FD-HI-V2V system under the joint and crossed effects of the RSI, HIs, and CRFCs. We validate all derived expressions via Monte-Carlo simulations. Based on these expressions, the OP, ST, and EC of the proposed FD-HI-V2V system are investigated and compared with other related systems, such as ideal hardware (ID) and half-duplex (HD) systems, as well as a system over traditional Rayleigh fading channels (RFCs), to clearly show the impacts of negative factors.
KSP Keywords
Channel estimation(CE), Closed-form expressions, Electronic components, Full-duplex, Half-duplex, Hardware Circuit, Hardware impairments, Monte-Carlo simulation(MCS), Non-ideal, Outage Probability, Rayleigh fading channel
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
CC BY