21FB1200, Development of High Reliable Life Jacket for the Crew based on Silicon Composite Sheet Heater,
Choi Choon Gi
Abstract
Wearable and flexible electronic devices have attracted much attention in recent decades due to their novel functionalities which can be applied in diverse fields such as identification of emergency, health monitoring, safety, and protection. For these devices to work precisely, they need a protective layer to prevent electromagnetic interference (EMI) and harsh environment. Therefore, developing multifunctional materials that can shield EMI and have thermal management functions has become essential. Herein, we propose a multifunctional conductive composite ink that can be applied to fabricate EMI shielding and sheet heater applications. The composite ink, which is eco-friendly, is a mixture of carbon nanotubes (CNTs) and heat-treated Ti3C2Tx MXene in waterborne polyurethane (WPU) matrix. Using the doctor blade printing method, we fabricated composite films with large size, high electrical conductivity, and good mechanical flexibility. The composite films with a thickness from 20 to 200 쨉m provided a remarkable EMI shielding performance from 20 dB to 70 dB in overall X-band and Ka-band. The excellent Joule heating performance and heat dissipation of the composite films were also demonstrated through practical sheet heaters and thermal interface materials (TIM). We believe that our composite ink could be a practical approach to delivering superior EMI shielding and thermal management performance in printed wearable electronics applications.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.