During the last decade, substantial resources have been invested to exploit massive amounts of boreholes data collected through groundwater extraction. Furthermore, boreholes depth can be considered one of the crucial factors in digging borehole efficiency. Therefore, a new solution is needed to process and analyze boreholes data to monitor digging operations and identify the boreholes shortcomings. This research study presents a boreholes data analysis architecture based on data and predictive analysis models to improve borehole efficiency, underground safety verification, and risk evaluation. The proposed architecture aims to process and analyze borehole data based on different hydrogeological characteristics using data and predictive analytics to enhance underground safety verification and planning of borehole resources. The proposed architecture is developed based on two modules; descriptive data analysis and predictive analysis modules. The descriptive analysis aims to utilize data and clustering analysis techniques to process and extract hidden hydrogeological characteristics from borehole history data. The predictive analysis aims to develop a bi-directional long short-term memory (BD-LSTM) to predict the boreholes depth to minimize the cost and time of the digging operations. Furthermore, different performance measures are utilized to evaluate the performance of the proposed clustering and regression models. Moreover, our proposed BD-LSTM model is evaluated and compared with conventional machine learning (ML) regression models. The R{2} score of the proposed BD-LSTM is 0.989, which indicates that the proposed model accurately and precisely predicts boreholes depth compared to the conventional regression models. The experimental and comparative analysis results reveal the significance and effectiveness of the proposed borehole data analysis architecture. The experimental results will improve underground safety management and the efficiency of boreholes for future wells.
KSP Keywords
Analysis Model, Clustering Analysis, Comparative analysis, Data analysis, Data collected, Descriptive analysis, Groundwater extraction, History data, Machine learning (ml), Performance measures, Proposed model
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.