Journal Article
Groundwater Level Prediction Model Using Correlation and Difference Mechanisms Based on Boreholes Data for Sustainable Hydraulic Resource Management
Drilling data for groundwater extraction incur changes over time due to variations in hydrogeological and weather conditions. At any time, if there is a need to deploy a change in drilling operations, drilling companies keep monitoring the time-series drilling data to make sure it is not introducing any changes or new errors. Therefore, a solution is needed to predict groundwater levels (GWL) and detect a change in boreholes data to improve drilling efficiency. The proposed study presents an ensemble GWL prediction (E-GWLP) model using boosting and bagging models based on stacking techniques to predict GWL for enhancing hydraulic resource management and planning. The proposed research study consists of two modules; descriptive analysis of boreholes data and GWL prediction model using ensemble model based on stacking. First, descriptive analysis techniques, such as correlation analysis and difference mechanisms, are applied to investigate boreholes log data for extracting underlying characteristics, which is critical for enhancing hydraulic resource management. Second, an ensemble prediction model is developed based on multiple hydrological patterns using robust machine learning (ML) techniques to predict GWL for enhancing drilling efficiency and water resource management. The architecture of the proposed ensemble model involves three boosting algorithms as base models (level-0) and a bagging algorithm as a meta-model that combines the base models predictions (level-1). The base models consist of the following boosting algorithms; eXtreme Gradient Boosting (XGBoost), AdaBoost, Gradient Boosting (GB). The meta-model includes Random Forest (RF) as a bagging algorithm referred to as a level-1 model. Furthermore, different evaluation metrics are used, including mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE), mean absolute percentage error (MAPE), and R2 score. The performance of the proposed E-GWLP model is compared with existing ensemble and baseline models. The experimental results reveal that the proposed model performed accurately in respect of MAE, MSE, and RMSE of 0.340, 0.564, and 0.751, respectively. The MAPE and R2 score of our proposed approach is 12.658 and 0.976, respectively, which signifies the importance of our work. Moreover, experimental results suggest that E-GWLP model is suitable for sustainable water resource management and improves reservoir engineering.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.