오늘날 딥러닝 기술의 향상으로 영상 분류, 객체 탐지, 객체 분할, 객체 추적 등 컴퓨터 비전 분야 또한 큰 발전을 이루고 있다. 지능적 감시, 로봇, 사물 인터넷, 자율주행 자동차 등 딥러닝 기술이 결합된 다양한 응용 기술들은 실제 산업에 적용되고 있으며, 이에 따라 사람의 소비를 위한 영상 데이터 뿐만 아니라 머신 비전을 위한 영상 데이터의 효율적인 압축 방식에 대한 필요성이 대두되고 있다. 본 논문에서는 머신 비전을 위한 열 적외선 영상의 객체 기반 압축 기법을 제안한다. 효율적인 영상 압축과 신경망의 좋은 성능을 유지하기 위해 본 논문에서는 신경망의 객체 탐지 결과와 객체 크기에 따라 입력 영상을 객체 부분과 배경 부분으로 나누어 서로 다른 압축률로 부호화를 수행하는 방법을 제안한다. 제안하는 방법은 VVC로 영상 전체를 압축하는 방식보다 BD-rate 값이 최대 -19.83%로 압축 효율이 뛰어나다는 것을 확인할 수 있다.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC ND)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.