Journal Article
Experimental and Theoretical Investigation of the Effect of Filler Material on the Performance of Flexible and Rigid Thermoelectric Generators
21JB5200, Distributed power generation type thermoelectric power generation device and stack design and demonstration,
Moon Seungeon
Abstract
Thermoelectric generators have found many applications where the heat source can be either flat or curved. For a curved heat source, flexible thermoelectric generators are generally used. A filler material with low thermal conductivity can provide additional mechanical support to the thermoelectric module and can reduce convection and radiation losses. Herein, the effect of three different filler materials on the output performance of rigid and flexible thermoelectric generators is investigated. At first, theoretical models are derived and the experimental study validated the models. The experimental study revealed that the flexible thermoelectric modules outperformed the rigid modules; this is due to the reduction of the number of thermal junctions in the flexible modules and due to the differences in the thermal conductivities of the flexible and rigid substrates. Likewise, among TE modules without filler/with air between the TE legs, with polyurethane foam filler material, and with polydimethylsiloxane filler material, air has the lowest thermal conductivity, and therefore, the thermoelectric generator without filler generates higher output power and higher power density than when the other two filler materials are used. For the fixed temperature gradient, the highest power densities for the flexible and rigid thermoelectric generators without filler are 155 and 137.7 μW/cm2 for temperature gradients of 10.8 and 10.3 °C, respectively.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.