ETRI-Knowledge Sharing Plaform

ENGLISH

성과물

논문 검색
구분 SCI
연도 ~ 키워드

상세정보

학술지 주기적 행동 검출을 위한 멀티스케일 U-Net
Cited - time in scopus Download 115 time Share share facebook twitter linkedin kakaostory
저자
유철환, 김호원, 한병옥, 장재윤, 유장희
발행일
202112
출처
전자공학회논문지, v.58 no.12, pp.35-41
ISSN
2287-5026
출판사
대한전자공학회
DOI
https://dx.doi.org/10.5573/ieie.2021.58.12.35
협약과제
21HS1200, 영유아/아동의 발달장애 조기선별을 위한 행동·반응 심리인지 AI 기술 개발, 유장희
초록
동영상에 포함된 반복적, 주기적 구간을 검출하기 위한 기술은 컴퓨터 비전 분야에서 활발히 연구되고 있다. 기존의 기법들은 일반적으로 반복적 구간 검출을 위한 중간 표현으로서 자기 유사성 행렬(SSM)을 생성하여 활용한다. 그러나 기존의 기법들은 단일 스케일에서의 자기 유사성 행렬의 활용으로 인해 다양한 길이 및 스케일의 반복적 행동을 포함한 동영상에 대해 검출 정확도가 떨어지는 한계점을 갖는다. 이러한 한계점을 극복하기 위해 제안하는 네트워크의 인코더에서는 먼저 3차원 합성곱 신경망의 여러 계층에서 추출된 특징 벡터를 활용하여 다양한 시간적 스케일에 대한 정보를 갖는 자기 유사성 행렬을 생성한다. 이렇게 생성된 자기 유사성 행렬들을 멀티 스케일 특징 앙상블 모듈을 통해 멀티 스케일 U-Net의 입력으로 제공함으로써 동영상 내 다양한 길이의 반복적 구간을 효율적으로 검출한다. 제안하는 기법은 Countix, PERTUBE 데이터셋에서의 실험을 통해 기존의 핸드 크래프트 특징 기반의 기법들뿐만 아니라 딥러닝을 활용한 최신 기법들보다 우수한 검출 성능을 보였다.
본 저작물은 크리에이티브 커먼즈 저작자 표시 - 비영리 (CC BY NC) 조건에 따라 이용할 수 있습니다.
저작자 표시 - 비영리 (CC BY NC)