카메라와 라이다가 탑재된 자율주행 시스템에서 깊이완성기술을 통해 조밀한 깊이추정을할 수 있다. 특히, 자기지도학습을 이용하면 깊이정답이 없는 주행데이터로도 깊이완성 네트워크의 학습이 가능하다. 실제 자율주행환경에서 이러한 깊이완성의 출력은 다른 알고리즘들의입력으로 사용되므로 매우 빠른 지연속도를 요구한다. 그래서 본 논문에서는 종래의 연구들처럼 네트워크를 고도화하여 정확도를 높이기보단 추론속도를 극대화한 형태의 깊이완성 네트워크를 사용한다. GPU 연산에 최적화된 RegNet 인코더를 사용하고 네트워크의 병렬성을 고려한 U-Net 형태의 네트워크를 설계한다. 대신, 본 논문에서는 자기지도학습 과정에서 정확도를높일 수 있는 몇 가지 기법들을 제시한다. 제시하는 기법들은 신뢰할 수 없는 라이다 입력에대한 강인함을 높이고 사전에 추출한 시맨틱 정보를 바탕으로 에지와 하늘 영역에 대한 깊이추정 품질을 향상시킨다. 실험을 통해 우리의 모델은 매우 경량임에도 (2.42ms at 1280x480) 노이즈에 강하며 최신 연구들과 대등한 정확도를 보임을 확인한다.
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.