이미지 내에서 객체는 다양한 크기로 존재하므로, 딥러닝 기반의 에지 탐지에서는 계층적 표현자를 학습하는 것이 중요하다. 또한, 에지 탐지는 픽셀 단위의 세밀한 연산을 요구하므로, 에지 탐지를 위해 이미지 정보 손실이 최소화되어야 한다. 이를 위해서 기존 에지 탐지 기법에서는 인코더와 디코더가 밀접 연결된 구조로 구성된다. 그러나, 인코딩 단계의 컨볼루션 및 풀링 연산은 여전히 이미지 정보를 유실시키는 문제점이 존재한다. 이를 해결하기 위해 본 논문에서는 GLOW를 기반으로 한 에지 탐지 기법을 제안한다. GLOW는 역변환 가능한 함수들로 구성되어, 이미지 정보 손실을 줄여준다. 제안 기법을 평가하기 위해 BSDS500 데이터셋과 BIPED 데이터셋을 각각 학습하고 비교하여, 유의미한 에지를 탐지함을 확인하였다. 더 나아가, 제안 기법을 사진 이미지가 아닌 다른 도메인인 회화 작품 이미지에 적용했을 때 제안 기법이 기존 기법에 비해 에지를 세밀하게 탐지함을 확인하였다.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.