Fall from height (FFH) is an accident that leads to fatalities in construction workers, and a major cause of FFH is due to the improper fastening of a safety hook of a safety harness to a temporary structure. In this study, we propose a new approach for recognizing the fastening state of the safety hook based on the similarity of motion between the motion of the hook and the body. We first assume that the similarity of motion between a hook and a body will be more similar when a hook is fastened to a part of a body than when the hook is fastened to a temporary structure. Under this assumption, we propose a new method that measures the similarity of motion of a hook and a body. In the proposing method, motions are represented through acceleration and rotations of the hook and the body. The magnitude of acceleration is represented as an ordinal variable and the magnitude of acceleration is jointly represented with rotations in a spherical coordinate system for effective similarity measurement of both motions. The effectiveness of our approach is verified by our newly collected task-related human activity dataset comprising the motion data of the hook and the body from inertial measurement unit (IMU) embedded mobile devices. Our proposed method confirmed that representing the magnitude of acceleration as an ordinal variable shows improved performance of 82.95%in terms of Youden's index. Moreover, it further verified that jointly representing the magnitude of acceleration and the rotation in the spherical coordinate system shows improved performance of 90.64%in terms of Youden's index.
KSP Keywords
Construction workers, Fall from height, Mobile devices, Motion Data, New approach, Safety harness, Similarity measurement method, Spherical Coordinate System, Youden's index, human activity, improved performance
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.