21HB1300, Space-time complex artificial intelligence blue-green algae prediction technology based on direct-readable water quality complex sensor and hyperspect,
Kwon Yong-Hwan
Abstract
Harmful algal blooms (HABs) have been frequently occurred with releasing toxic substances, which typically lead to water quality degradation and health problems for humans and aquatic animals. Hence, accurate quantitative analysis and prediction of HABs should be implemented to detect, monitor, and manage severe algal blooms. However, the traditional monitoring required sufficient expense and labor while numerical models were restricted in terms of their ability to simulate the algae dynamic. To address the challenging issue, this study evaluates the applicability of deep learning to simulate chlorophyll-a (Chl-a) and phycocyanin (PC) with the internet of things (IoT) system. Our research adopted LSTM models for simulating Chl-a and PC. Among LSTM models, the attention LSTM model achieved superior performance by showing 0.84 and 2.35 (μg/L) of the correlation coefficient and root mean square error. Among preprocessing methods, the z-score method was selected as the optimal method to improve model performance. The attention mechanism highlighted the input data from July to October, indicating that this period was the most influential period to model output. Therefore, this study demonstrated that deep learning with IoT system has the potential to detect and quantify cyanobacteria, which can improve the eutrophication management schemes for freshwater reservoirs.
KSP Keywords
Attention mechanism, Chl-a, Chlorophyll-A, Correlation Coefficient, Freshwater reservoirs, Harmful Algal Blooms, Internet of thing(IoT), Model output, Model performance, Numerical models, Quality degradation
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.