Since stroke disease often causes death or serious disability, active primary prevention and early detection of prognostic symptoms are very important. Stroke diseases can be divided into ischemic stroke and hemorrhagic stroke, and they should be minimized by emergency treatment such as thrombolytic or coagulant administration by type. First, it is essential to detect in real time the precursor symptoms of stroke, which occur differently for each individual, and to provide professional treatment by a medical institution within the proper treatment window. However, prior studies have focused on developing acute treatment or clinical treatment guidelines after the onset of stroke rather than detecting the prognostic symptoms of stroke. In particular, in recent studies, image analysis such as magnetic resonance imaging (MRI) or computed tomography (CT) has mostly been used to detect and predict prognostic symptoms in stroke patients. Not only are these methodologies difficult to diagnose early in real-time, but they also have limitations in terms of a long test time and a high cost of testing. In this paper, we propose a system that can predict and semantically interpret stroke prognostic symptoms based on machine learning using the multi-modal bio-signals of electrocardiogram (ECG) and photoplethysmography (PPG) measured in real-time for the elderly. To predict stroke disease in real-time while walking, we designed and implemented a stroke disease prediction system with an ensemble structure that combines CNN and LSTM. The proposed system considers the convenience of wearing the bio-signal sensors for the elderly, and the bio-signals were collected at a sampling rate of 1,000Hz per second from the three electrodes of the ECG and the index finger for PPG while walking. According to the experimental results, C4.5 decision tree showed a prediction accuracy of 91.56% while RandomForest showed a prediction accuracy of 97.51% during walking by the elderly. In addition, the CNN-LSTM model using raw data of ECG and PPG showed satisfactory prediction accuracy of 99.15%. As a result, the real-time prediction of the elderly stroke patients simultaneously showed high prediction accuracy and performance.
KSP Keywords
C4.5 Decision Tree(C4.5 DT), Clinical treatment, Computed tomography(C.T), Decision Tree(DT), Disease prediction, Early Detection, Emergency treatment, Hemorrhagic stroke, Image Analysis, Index finger, Magnetic resonance(MR)
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.