This letter proposes a new method for audio coding that utilizes blind spectral recovery to improve the coding efficiency without compromising performance. The proposed method transmits only a fraction of the spectral coefficients, thereby reducing the coding bit rate. Then, it recovers the remaining coefficients in the decoder using the transmitted coefficients as input. The proposed method is differentiated from conventional spectral recovery in that the coefficients to be recovered are interleaved with the transmitted coefficients to obtain the most data correlation. Further, it enhances the transmitted coefficients, which are degraded by quantization errors, to deliver better information to the recovery process. The spectral recovery is conducted recursively on a band basis such that information recovered in one band is used for the recovery in subsequent bands. An improved level correction for the recovered coefficients and a new sign coding are also developed. A subjective performance evaluation confirms that the proposed method at 40 kbps provides statistically equivalent sound quality to a state-of-the-art coding method at 48 kbps for speech and music categories.
KSP Keywords
Audio coding, Bit Rate, Coding efficiency, Coding method, Performance evaluation, Quantization error, Recovery process, data correlation, highly efficient, machine Learning, new method
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.