Utility-driven caching opened up a new design opportunity for caching algorithms by modeling the admission and eviction control as a utility maximization process with essential support for service differentiation. Nevertheless, there is still to go in terms of adaptability to changing environment. Slow convergence to an optimal state may degrade actual user-experienced utility, which gets even worse in non-stationary scenarios where cache control should be adaptive to time-varying content request traffic. This paper proposes to exploit deep reinforcement learning (DRL) to enhance the adaptability of utility-driven time-to-live (TTL)-based caching. Employing DRL with long short-term memory helps a caching agent learn how it adapts to the temporal correlation of content popularities to shorten the transient-state before the optimal steady-state. In addition, we elaborately design the state and action spaces of DRL to overcome the curse of dimensionality, which is one of the most frequently raised issues in machine learning-based approaches. Experimental results show that policies trained by DRL can outperform the conventional utility-driven caching algorithm under some non-stationary environments where content request traffic changes rapidly.
KSP Keywords
Changing environment, Deep reinforcement learning, Learning-based, Long-short term memory(LSTM), Nonstationary Environment, Optimal state, Reinforcement Learning(RL), Service differentiation, Slow convergence, Temporal Correlation, Time-to-live(TTL)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.