Arrhythmia detection algorithms based on deep learning are attracting considerable interest due to their vital role in the diagnosis of cardiac abnormalities. Despite this interest, deep feature representation for ECG is still challenging and intriguing due to the inter-patient variability of the ECG's morphological characteristics. The aim of this study was to learn a balanced deep feature representation that incorporates both the short-term and long-term morphological characteristics of ECG beats. For efficient feature extraction, we designed a temporal transition module that uses convolutional layers with different kernel sizes to capture a wide range of morphological patterns. Imbalanced data are a key issue in developing an efficient and generalized model for arrhythmia detection as they cause over-fitting to minority class samples (abnormal beats) of primary interest. To mitigate the imbalanced data issue, we proposed a novel, cost-sensitive loss function that ensures a balanced deep representation of class samples by assigning effective weights to each class. The cost-sensitive loss function dynamically alters class weights for every batch based on class distribution and model performance. The proposed method acquired an overall accuracy of 99.81% for intra-patient classification and 96.36% for the inter-patient classification of heartbeats. The experimental results reveal that the proposed approach learned a balanced representation of ECG beats by mitigating the issue of imbalanced data and achieved an improved classification performance as compared to other studies.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.