22ZB1100, Development of Creative Technology for ICT,
Baek Yongsoon
Abstract
This paper presents a highly efficient time-based maximum power point tracking (TB-MPPT) circuit with an enhanced three-dimensional tuning method. In the proposed circuit, firstly, the reconfigurable switched capacitor dc-dc converter with three conversion ratios is used to extend power range. The conversion ratio is selected according to input voltage level to avoid large charge redistribution loss. Secondly, the proposed algorithm can find the maximum power point with the minimum tuning switching frequency and capacitance control knob to reduce power loss, which results in high power conversion efficiency (PCE). The TB-MPPT circuit is fabricated with a 180nm CMOS process and has an active area of 0.42mm. The measured results achieve a peak PCE of 90.4%, a peak power tracking efficiency of 99.6%, and the output power of 52-μ W in an energy harvesting system with four commercial PV cells.
KSP Keywords
Active area, CMOS Process, Charge redistribution, Conversion efficiency(C.E.), Conversion ratio, Energy Harvesting(EH), Extended power, High power conversion efficiency, Input voltage, Maximum Power Point Tracking(MPPT), Output power
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC ND)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.