ETRI-Knowledge Sharing Plaform

KOREAN
논문 검색
Type SCI
Year ~ Keyword

Detail

Conference Paper 엔트로피 모델을 활용한 심층 신경망 기반 오디오 압축 모델 최적화
Cited - time in scopus Share share facebook twitter linkedin kakaostory
Authors
임형섭, 강홍구, 장인선
Issue Date
2022-06
Citation
한국방송·미디어공학회 학술 대회 (하계) 2022, pp.33-36
Publisher
한국방송·미디어공학회
Language
Korean
Type
Conference Paper
Abstract
본 논문에서는 심층 신경망 기반 점진적 다계층 오디오 코덱의 비트 전송률 효율 향상을 위한 엔트로피 모델 기반 양자화 방식을 제안한다. 최근 심층 신경망을 이용하여 전통적인 신호 처리 이론 기반의 상용 오디오 코덱들을 대체하기 위한 오디오 압축 및 복원 시스템에 관한 연구가 활발하게 이루어지고 있다. 그러나 아직은 기존 상용 코덱의 성능에 도달하지 못하고 있으며 특히 종단 간 오디오 압축 모델의 경우, 적은 정보량으로 높은 품질을 얻기 위해서는 부호화기의 양자화 구조를 개선하는 것이 필수적이다. 본 연구에서는 기존에 제안된 종단 간 오디오 압축 모델 중 하나인 점진적 다계층 오디오 코덱의 벡터 양자화기를 엔트로피 모델 기반 양자화기로 대체하고 전송률-왜곡 트레이드오프 관계를 활용하여 전송률을 다양한 형태로 조절할 수 있음을 보임으로써 엔트로피 모델 기반 양자화기 도입의 타당성을 검증한다.