22ZB1100, Development of Creative Technology for ICT,
Baek Yongsoon
Abstract
Spiking neural networks (SNNs) are inspired by biological behavior in the neural system processing information by the rate or delay components of discrete spiking signals in a massively parallel manner. Sparse and asynchronous spikes allow event-driven information processes, leading to low power consumption and fast inference. By exploiting these advantageous features of the SNNs, this article presents a signal detection method for human body communication (HBC), which has recently emerged as an innovative alternative for wireless body area networks using the human body as a signal transmission medium. In particular, binary spike signaling in the SNNs is highly appropriate for application in the digital signal transmission-based HBC systems. The experiments of body channel response (BCR) measurements using digital training signals show that the body channel characteristics vary with changes in body posture and device location, especially in wearable environments requiring small-sized devices powered by batteries. The proposed SNN structures can enhance communication performance from signal distortions, stemming from the effects of the time-dispersive body channel and bandwidth-limited receive filter. The proposed SNN-based transmission symbol code (TSC) detector (STD) can improve about 3.53 dB carrier-to-noise ratio (CNR) at a bit error rate (BER) of 10-6 for a data rate of 1.3125 Mbps, compared to that of a conventional maximum likelihood (ML) detector. In addition, the proposed SNN-based preamble detector (SPD) can secure an approximately 150 wider threshold range than that of a conventional correlator to achieve a detection probability higher than 99.9% of the frame existence at a CNR of approximately 0 dB required for achieving a BER of 10-6 by the STD.
KSP Keywords
Biological behavior, Bit Error Rate(And BER), Body Area Networks(BANs), Body posture, Channel Characteristics, Communication performance, Detection Method, Detection probability, Digital Signal, Event-driven, Human Body Communication(HBC)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.