Point clouds acquired with LiDAR are widely adopted in various fields, such as threedimensional (3D) reconstruction, autonomous driving, and robotics. However, the high-density point cloud of large scenes captured with Lidar usually contains a large number of virtual points generated by the specular reflections of reflective materials, such as glass. When applying such large-scale highdensity point clouds, reflection noise may have a significant impact on 3D reconstruction and other related techniques. In this study, we propose a method that uses deep learning and multi-position sensor comparison method to remove noise due to reflections from high-density point clouds in large scenes. The proposed method converts large-scale high-density point clouds into a range image and subsequently uses a deep learning method and multi-position sensor comparison method for noise detection. This alleviates the limitation of the deep learning networks, specifically their inability to handle large-scale high-density point clouds. The experimental results show that the proposed algorithm can effectively detect and remove noise due to reflection.
KSP Keywords
3D Reconstruction, Deep learning method, Deep learning network, High-density, Large scenes, Large-scale point cloud, Noise filtering, Range Image, Reflective materials, autonomous driving, comparison method
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.