Electrocardiogram (ECG) has been investigated as promising biometrics with high authentication accuracy, natural liveness test ability, and wearable sensor availability. There have been many algorithms developed for ECG biometric authentication or identification including recent state-of-the-art deep learning (DL) methods that usually yielded excellent performance with real ECG data in ideal conditions. However, one of the challenges against ideal conditions is the intra-personal variability of ECG pulses due to heart beat rate changes. Due to this variability, ECG based biometric methods have experienced significant performance degradation. It is especially challenging when a small number of ECG pulses must be used for biometrics with fast response authentication since there is not enough information available to correct for different heart rates. In this letter, we investigated DL based ECG biometrics with the input of a small number of ECG pulses considering varying heart rates. We propose physiology-based augmented deep neural network (DNN) frameworks for ECG biometric methods that are based on the Hodges?? QT interval correction. Unlike QT interval correction methods, our proposed framework does not require the estimated heart rate. Our proposed training and testing schemes were evaluated with representative DL based biometric methods using CNN and RNN with very short ECG pulses (1 or 3 pulses per authentication) from the public multi-session ECG-ID dataset (83 subjects). We exploited the ECG-ID dataset to simulate the challenging scenario including the enrollment and authentication happening over relatively long time duration so that heart rate variation is likely occurring. Our augmented DNN frameworks yielded significantly better performance than the original DL based biometrics; up to 11.7% improvement in accuracy and 8.6% improvement in sensitivity simultaneously with 99.9% specificity.
KSP Keywords
Biometric authentication, Correction method, Deep neural network(DNN), ECG biometric, Heart rate variation(HRV), Heartbeat Rate, Long Time, Physiology-based, QT interval, Time duration, Wearable sensors
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.